ФГБОУ ВО НОВОСИБИРСКИЙ ГАУ

Кафедра математики и физики

Per. № <u>17И. ОЗ -10</u> «<u>ОЗ</u>» <u>10</u> 202 **2** г.

УТВЕРЖДЕН

Заведующий кафедрой математики и

физики

В.Н. Бабин

(подпись)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Б1.О.10 Математический анализ

Шифр и наименование дисциплины

09.03.03 Прикладная информатика

Код и наименование направления подготовки

Прикладная информатика

Направленность (профиль)

Паспорт фонда оценочных средств

№ π/π	Контролируемые разделы (темы) дисциплины*	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Введение в анализ		
2	Предел и непрерывность		Контрольные вопросы
3	Дифференциальное исчисление		Контрольные вопросы,
	функций одной переменной		контрольная работа
4	Интегральное исчисление		Контрольные вопросы
	функции одной переменной		
5	Дифференциальное исчисление		Контрольные вопросы
	функций нескольких	УК-1	
	переменных	ОПК-1	
6	Интегральное исчисление		Контрольные вопросы
	функции нескольких		
	переменных		
7	Ряды		Контрольные вопросы
8	Обыкновенное		Контрольная работа
	дифференциальное уравнение		
	Зачет		Вопросы к зачету
	Экзамен		Вопросы к экзамену

ТЕКУЩИЙ КОНТРОЛЬ УСПЕВАЕМОСТИ

1. Описание оценочных средств по разделам (темам) дисциплины

Раздел Предел и непрерывность

Вариант 1

1.
$$\lim_{x \to -2} \frac{\sqrt[3]{x-6} + 2}{x^2 - 3x - 10}$$

2.
$$\lim_{x\to 2} \frac{\sin 7\pi x}{\sin 8\pi x}$$

$$3. \quad \lim_{x \to \infty} \left(\frac{x+4}{x+2} \right)^x$$

4. Общий член последовательности 1, $\frac{3}{4}$, $\frac{5}{9}$, $\frac{7}{16}$, ...

имеет вид...

1)
$$a_n = \frac{2n-1}{n^2}$$

2)
$$a_n = \frac{2n+1}{n^2}$$

3)
$$a_n = (-1)^n \frac{2n-1}{n^2}$$

4)
$$a_n = (-1)^{n+1} \frac{2n+1}{n^2}$$

5. Дана функция

$$y = \sqrt{5 - 4x - x^2} + \lg(x+3)$$
.

Тогда ее областью определения является множество ...

$$2) [-3;1]$$

3)
$$(-3; -5] \cup [1; +\infty)$$

Вариант 2

1.
$$\lim_{x \to 3} \frac{x^2 - 4x + 3}{\sqrt{x - 2} - 1}$$

$$2. \quad \lim_{x \to \pi/2} \frac{\cos x}{2x - \pi}$$

$$3. \lim_{x\to\infty} \left(\frac{2x-3}{2x+1}\right)^x$$

4. Общий член последовательности $\frac{1}{2}$, $\frac{2}{5}$, $\frac{3}{10}$, $\frac{4}{17}$, ...

имеет вид...

1)
$$a_n = \frac{n}{n^2 + 1}$$

2)
$$a_n = \frac{n+1}{n^2+1}$$

3)
$$a_n = (-1)^n \frac{n}{n^2 + 1}$$

4)
$$a_n = (-1)^{n+1} \frac{n+1}{n^2+1}$$

5. Дана функция

$$y = \sqrt{6x - x^2} + \ln(x - 3)$$
.

Тогда ее областью определения является множество ...

- 1) (3;6]
- 2) [3;6]
- 3) $[6; +\infty)$
- 4) (3;6)

Вариант 3

1.
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{\sqrt[3]{x} - 1}$$

$$2. \quad \lim_{x \to 2} \frac{\sin \pi x}{x - 2}$$

$$3. \lim_{x\to\infty} \left(\frac{x-6}{x+3}\right)^{3x}$$

4. Общий член последовательности 3,
$$\frac{5}{4}$$
, $\frac{7}{9}$, $\frac{9}{16}$, ...

имеет вид...

1)
$$a_n = \frac{2n+1}{n^2}$$

2)
$$a_n = \frac{2n-1}{n^2}$$

3)
$$a_n = (-1)^n \frac{2n+1}{n^2}$$

4)
$$a_n = (-1)^{n+1} \frac{2n-1}{n^2}$$

5. Дана функция

$$y = \sqrt{x^2 - x - 2} + \log_3(4 - x)$$
.

Тогда ее областью определения является множество ...

1)
$$(-\infty; -1] \cup [2; 4)$$

2)
$$(-\infty; -1] \cup [2; 4]$$

$$3)[-1;2]$$

4)
$$(-\infty; -1) \cup (2; 4)$$

1.
$$\lim_{x\to 8} \frac{x^2 - 9x + 8}{\sqrt[3]{x^2 - 4}}$$

$$2. \quad \lim_{x \to -2} \frac{\operatorname{tg} \pi x}{x+2}$$

3.
$$\lim_{x \to \infty} \left(\frac{10x - 3}{10x - 1} \right)^{5x}$$

4. Общий член последовательности 2, $\frac{3}{4}$, $\frac{4}{9}$, $\frac{5}{16}$, ...

имеет вид...

$$1) a_n = \frac{n+1}{n^2}$$

2)
$$a_n = \frac{n-1}{n^2}$$

3)
$$a_n = (-1)^n \frac{n+1}{n^2}$$

4)
$$a_n = \frac{2n-1}{n^2}$$

5. Дана функция

$$y = \log_2(2x+1) - \sqrt{6+x-x^2} .$$

Тогда ее областью определения является множество \dots

- 1) (-0.5;3]
- 2) [-0,5;3]
- 3) $[3; +\infty)$
- 4) (-0.5;3)

Вариант 5

1.
$$\lim_{x \to 1} \frac{x^2 - 4x + 3}{\sqrt{x} - 1}$$

2.
$$\lim_{x \to 3\pi/2} \frac{\sin 2x}{2x - 3\pi}$$

$$3. \lim_{x \to \infty} \left(\frac{2x+3}{2x} \right)^{x-2}$$

4. Общий член последовательности $1, \frac{3}{4}, \frac{5}{9}, \frac{7}{16}, \dots$

имеет вид...

1)
$$a_n = \frac{2n-1}{n^2}$$

2)
$$a_n = \frac{2n+1}{n^2}$$

3)
$$a_n = (-1)^n \frac{2n-1}{n^2}$$

4)
$$a_n = (-1)^{n+1} \frac{2n+1}{n^2}$$

5. Дана функция

$$y = \log_5(x+2) - \sqrt{8 - 2x - x^2} .$$

Тогда ее областью определения является множество ...

- 1) (-2;2]
- 2)[-2;2]
- 3) $[2; +\infty)$
- 4) (-2;2)

Вариант 6

- 1. $\lim_{x \to 3} \frac{x^2 5x + 6}{\sqrt{x + 1} 2}$
- $2. \lim_{x\to 2\pi} \frac{\sin 3x}{x-2\pi}$
- 3. $\lim_{x \to \infty} \left(\frac{3x}{3x+1} \right)^{x/2}$
- 4. Общий член последовательности $1, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \dots$

имеет вид...

$$1) a_n = \frac{n}{2n-1}$$

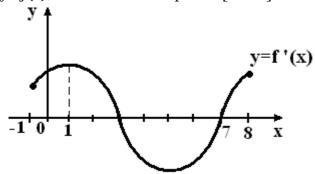
$$2) \ a_n = \frac{n}{2n+1}$$

3)
$$a_n = (-1)^n \frac{n}{2n-1}$$

4)
$$a_n = (-1)^{n+1} \frac{n}{2n+1}$$

5. Дана функция

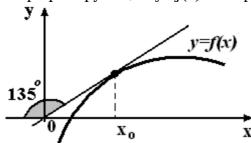
$$y = \sqrt{6x - x^2} + \ln(x - 3)$$
.


Тогда ее областью определения является множество ...

- 1) (3;6]
- 2) [3;6]
- 3) $[6; +\infty)$
- 4) (3;6)

Раздел Дифференциальное исчисление функции одной переменной

Вариант №1


1. На рисунке изображен график производной функции y=f(x), заданной на отрезке [-1; 8].

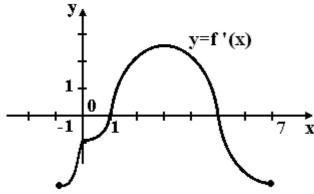
Тогда точкой максимума этой функции является...

- 1) 3
- 2) 7
- 3) 1
- 4)8

2. График функции y = f(x) изображен на рисунке.

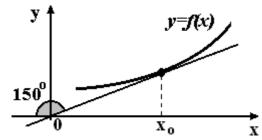
Тогда значение производной этой функции в точке x_0 равно

- 1) 1
- 2) -1
- 3) 0,5
- 4) $-\sqrt{3}$


В заданиях 3-5 найти y'_x

- $3. \ y = \left(\sin\sqrt{x}\right)^{x^2}$
- 4. $y = \sqrt[3]{4x^2 12} \cdot \arcsin^2(e^{3x})$

$$5. \begin{cases} x = \sqrt{t} - t \\ y = \frac{1}{\sqrt{t}} \end{cases}$$


Вариант №2

1. На рисунке изображен график производной функции y=f(x), заданной на отрезке [-1; 7].

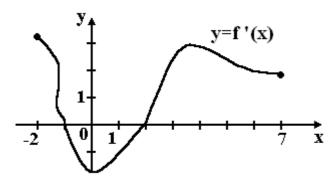
Тогда точкой максимума этой функции является...

- 1) 5
- 2) 3
- 3) 1
- 4) 7
- 2. График функции y = f(x) изображен на рисунке.

Тогда значение производной этой функции в точке x_0 равно

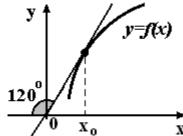
- 1) $\frac{\sqrt{3}}{3}$
- 2) $-\frac{\sqrt{3}}{3}$
- 3) $\frac{\sqrt{3}}{2}$
- 4) $-\sqrt{3}$

В заданиях 3-5 найти y'_x


3.
$$y = tg^2 x \cdot \sqrt[4]{e^x + 2}$$

4.
$$y = (tg x)^x$$

5.
$$\begin{cases} x = \cos^2 2t \\ y = 3\cos 2t - 2\sin 2t \end{cases}$$


Вариант №3

1. На рисунке изображен график производной функции y=f(x), заданной на отрезке [-2; 7].

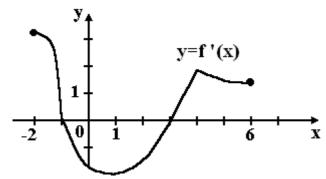
Тогда точкой минимума этой функции является...

- 1) 2
- 2) -1
- 3) 4
- 4) 7
- 2. График функции y = f(x) изображен на рисунке.

Тогда значение производной этой функции в точке x_0 равно

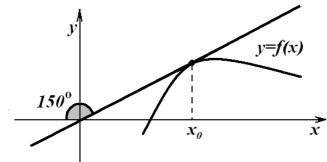
- 1) $\sqrt{3}$
- 2) $-\sqrt{3}$
- 3) $\frac{\sqrt{3}}{3}$
- 4) $-\frac{\sqrt{3}}{3}$

В заданиях 3-5 найти y'_x


3.
$$y = \frac{\lg \sqrt{5x+1}}{\cos^2(3x-1)}$$

$$4. \ \ y = (\arccos \ln 2x)^{\sqrt{x}}$$

4.
$$y = (\arccos \ln 2x)^{\sqrt{x}}$$
5.
$$\begin{cases} x = 5 - t^2 \\ y = 3t - t^3 \end{cases}$$


Вариант №4

1. На рисунке изображен график производной функции y=f(x), заданной на отрезке [-2; 6].

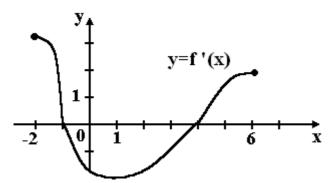
Тогда точкой минимума этой функции является...

- 1) 3
- 2)-1
- 3) 6
- 4) 1
- 2. График функции y = f(x) изображен на рисунке.

Тогда значение производной этой функции в точке x_0 равно

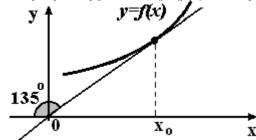
- 1) $\frac{\sqrt{3}}{3}$
- 2) $-\frac{\sqrt{3}}{3}$
- 3) $\frac{\sqrt{3}}{2}$
- 4) $-\sqrt{3}$

В заданиях 3-5 найти y'_x


3.
$$y = \sqrt[4]{\arcsin^2 \frac{4}{x} \cdot e^{3x-2}}$$

$$4. \ \ y = \left(\frac{1}{\cos^2 x}\right)^{\sqrt{x}}$$

$$5. \begin{cases} x = \ln t \\ y = \operatorname{arctg} t \end{cases}$$


Вариант №5

1. На рисунке изображен график производной функции y=f(x), заданной на отрезке [-2; 6].

Тогда точкой максимума этой функции является...

- 1) –1
- 2) 4
- 3) –2
- 4) 6
- 2. График функции y = f(x) изображен на рисунке.

Тогда значение производной этой функции в точке x_0 равно

- 1) 1
- 2) -1
- 3) $-\sqrt{3}$
- 4) 0,5

В заданиях 3-5 найти y'_x

- a) $y = \sqrt{7x e^{2x}} \cdot \sin^2(2x + 5)$
- $6) y = (\ln 4x)^{\sin x}$
- B) $\begin{cases} x = \sqrt[3]{t^2 + 1} \\ y = e^{2t} 4t \end{cases}$

Раздел Интегральное исчисление функции одной переменной

Вариант 1

$$1. \int (x-2)\sin(2x+1)dx$$

2.
$$\int \frac{2x-1}{x^2-2x+10} dx$$

3.
$$\int \frac{4x-1}{x(x-2)(x-3)} dx$$

4.
$$\int \frac{\sqrt[6]{x}}{x(\sqrt[3]{x}+9)} dx$$

5.
$$\int \frac{dx}{2\cos x + \sin x + 3}$$

Вариант 2

1.
$$\int (3x-1)e^{-2x+3}dx$$

2.
$$\int \frac{2x-1}{\sqrt{x^2-4x+12}} dx$$

3.
$$\int \frac{x^2 - x + 4}{(x+2)(x-1)(x-4)} dx$$

4.
$$\int \frac{\sqrt{x}-1}{\sqrt[6]{x}-1} dx$$

$$5. \int \frac{dx}{3\cos x + 5\sin x + 3}$$

Вариант 3

1.
$$\int (4-2x)e^{2x+3}dx$$

2.
$$\int \frac{x-5}{x^2-2x+5} dx$$

3.
$$\int \frac{x^2 + 5}{x(x+6)(x-1)} dx$$

4.
$$\int \frac{\sqrt[6]{x}}{x(\sqrt[3]{x}+9)} dx$$

$$5. \int \frac{dx}{2\sin x + \cos x + 2}$$

$$1. \int (2x-3)\cos(3x+2)dx$$

$$2. \int \frac{4x-5}{\sqrt{x^2+6x+5}} dx$$

3.
$$\int \frac{x^2 - 4x}{(x+2)(x-1)(x-3)} dx$$

$$4. \int \frac{x}{\sqrt[3]{x-1}} dx$$

$$5. \int \frac{dx}{5\sin x + 3\cos x + 3}$$

$$1. \int (2-x) \ln x dx$$

$$2. \int \frac{2x+1}{x^2+8x+65} dx$$

3.
$$\int \frac{x-7}{(x+2)(x-4)(x-1)} dx$$

$$4. \int \frac{\sqrt[6]{x}}{x(\sqrt[3]{x}-1)} dx$$

$$5. \int \frac{dx}{\cos x + \sin x + 1}$$

Раздел Дифференциальное исчисление функций нескольких переменных

1.
$$z = \frac{\cos x^2}{y} \cdot \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} - ?$$

2.
$$z = xy + \frac{x}{y} \cdot \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} - ?$$

3.
$$z = x^y$$
. $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ -?

4.
$$z = x^3 y^2 - 3x\sqrt{y}$$
. Найти все частные производные второго порядка.

5.
$$z = x \cos 3y$$
. $d^2z - ?$

6.
$$z = x \sin(x + y)$$
. $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ -?

7.
$$z = arctg \frac{y}{x} \cdot \frac{\partial z}{\partial x}, \frac{\partial z}{\partial v} - ?$$

8.
$$z = e^{xy}$$
. $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ -?

9.
$$z = \sqrt{x^2 + y} \cdot \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} - ?$$

10.
$$z = x \ln(xy)$$
. $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ -?

Раздел Интегральное исчисление функций нескольких переменных

- 1. Вычислить $\int_{0}^{x} dx \int_{0}^{x} (x+y)dy$.
- 2. Вычислить $\int_{0}^{1} dx \int_{x^{2}}^{x} xy^{2} dy$.
- 3. Вычислить $\int_{0}^{1} dx \int_{0}^{1} x^{2} y^{2} dy$.
- 4. Изменить порядок интегрирования $\int_{0}^{2} dx \int_{x}^{2x} f(x,y) dy$.

 5. Изменить порядок интегрирования $\int_{-6}^{2} dx \int_{x}^{2-x} f(x,y) dy$.

- 6. Изменить порядок интегрирования $\int_{0}^{1} dx \int_{x^{3}}^{x^{2}} f(x,y) dy$.

 7. Изменить порядок интегрирования $\int_{1}^{e} dx \int_{0}^{\ln x} f(x,y) dy$.

 8. Изменить порядок интегрирования $\int_{0}^{\frac{\pi}{2}} dx \int_{0}^{\sin x} f(x,y) dy$.
- 9. Изменить порядок интегрирования $\int_{-4}^{1} dy \int_{y^2-4}^{-3y} f(x,y) dx$. 10.Изменить порядок интегрирования $\int_{-2}^{1} dx \int_{x+2}^{4-x^2} f(x,y) dy$.

Раздел Ряды

Вариант №1.

- 1. определение ряда.
- 2. определение частичной суммы ряда.
- 3. условная сходимость.
- 4. признак Даламбера.
- **5.** исследовать сходимость $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$.

Вариант №2.

- 1. определение остатка ряда.
- 2. определение сходящегося ряда.
- 3. абсолютная сходимость.
- 4. радикальный признак Коши.
- 5. исследовать сходимость $\sum_{n=1}^{\infty} \frac{n+1}{n}$.

Вариант №3.

- 1. определение суммы ряда.
- 2. определение расходящегося ряда.
- 3. определение знакопеременного ряда.
- 4. признак сравнения.
- 5. исследовать сходимость $\sum_{n=1}^{\infty} \frac{n^2 1}{n+1}$.

Вариант №4.

- 1. определение сходящегося ряда.
- 2. остаток ряда.
- 3. определение знакочередующегося ряда.
- 4. интегральный признак Коши.
- 5. исследовать сходимость $\sum_{n=1}^{\infty} \frac{1}{n^2 \cdot \sqrt[3]{n}}$.

Вариант №5.

- 1. определение частичной суммы ряда.
- 2. необходимый признак сходимости ряда.
- 3. определение остатка ряда.
- 4. признак Лейбница.
- 5. исследовать сходимость $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n} \cdot \sqrt{n}}$.

Вариант №6.

- 1. определение ряда.
- 2. определение частичной суммы ряда.
- 3. условная сходимость.
- 4. признак Даламбера.
- 5. исследовать сходимость $\sum_{n=1}^{\infty} \frac{1}{\sqrt[5]{n^7}}$.

Преподаватель имеет право установить иную шкалу оценки для данного вида КИМ.

Критерии оценки контрольных вопросов:

- оценка «отлично» выставляется студенту, если правильно выполнены 90-100% заданий;
 - оценка «хорошо» правильно выполнены 70-90% заданий;
 - оценка «удовлетворительно» правильно выполнены 50-70% заданий;
- оценка «неудовлетворительно» правильно выполненных заданий менее 50% .

Комплект заданий для контрольной работы

Тема Дифференциальное исчисление функции одной переменной

Задание 1-2. Найти производную.

Задание 3. Вычислить приближенно с помощью дифференциала

Задание 4. . Провести полное исследование функций и построить их графики.

Вариант 1

Задание 1.
$$y = e^{2x}(2-\sin 2x - \cos 2x)/8$$

Задание 2.
$$y = \frac{2(3x^3 + 4x^2 - x - 2)}{15\sqrt{1+x}}$$

Задание 3.
$$y = \sqrt[3]{x}$$
, $x = 7,76$.

Задание **4.**
$$y = (x^3 + 4)/x^2$$

Вариант 2

Задание 1.
$$y = e^{-x} \arcsin e^x - \ln(1 + \sqrt{1 - e^{2x}}) \dots$$

Задание 2.
$$y = \frac{(2x^2 - 1)\sqrt{1 + x^2}}{3x^3}$$

Задание 3.
$$y = \sqrt[3]{x^3 + 7x}$$
, $x = 1,012$.

Задание 4.
$$y = (x^2 - x + 1)/(x - 1)$$

Вариант 3

Задание 1.
$$y = 3e^{\sqrt[3]{x}}(\sqrt[3]{x^2} - 2 \cdot \sqrt[3]{x} + 2)$$

Задание 2.
$$y = \frac{x^4 - 8x^2}{2(x^2 - 4)}$$

Задание 3.
$$y = (x + \sqrt{5 - x^2})/2$$
, $x = 0.98$.

Задание **4**.
$$y = 2/(x^2 + 2x)$$

Вариант 4

Задание 1.
$$y = e^{\sin x} \left(x - \frac{1}{\cos x} \right)$$

Задание 2.
$$y = \frac{(2x^2 - 1)\sqrt{1 + x^2}}{3x^3}$$

Задание 3
$$y = \sqrt[3]{x}$$
, $x = 27,54$.

Задание 4
$$y = 4x^2/(3+x^2)$$
.

Задание 1.
$$y = \frac{e^x}{2}[(x^2 - 1)\cos x + (x - 1)^2\sin x]$$

Задание 2.
$$y = \frac{(1+x^8)\sqrt{1+x^8}}{12x^{12}}$$

Задание 3.
$$y = \arcsin x, x = 0.08$$
.

Задание **4**.
$$y = 12x/(9+x^2)$$

Задание 1.
$$y = -\frac{1}{2}e^{-x^2}(x^4 + 2x^2 + 2)$$

Задание 2.
$$y = \frac{x^2}{2\sqrt{1-3x^4}}$$

Задание 3.
$$y = \sqrt[3]{x^2 + 2x + 5}$$
, $x = 0.97$.

Задание 4.
$$y = (x^2 - 3x + 3)/(x-1)$$

Вариант 7

Задание 1.
$$y = \frac{2x-1}{4}\sqrt{2+x-x^2}$$

Задание 2.
$$y = \frac{(x^2 - 6)\sqrt{(4 + x^2)^3}}{120x^5}$$

Задание 3.
$$y = \sqrt[3]{x}$$
, $x = 26,46$.

Задание **4**.
$$y = (4-x^3)/x^2$$

Вариант 8

Задание 1.
$$y = (x-4)\sqrt{8x-x^2-7}$$
.

Задание 2
$$y = \frac{(x^2 - 8)\sqrt{x^2 - 8}}{6x^3}$$

Задание 3.
$$y = \sqrt{x^2 + x + 3}$$
, $x = 1,97$.

Задание 4
$$y = (x^2 - 4x + 1)/(x - 4)$$

Вариант 9

Задание 1.
$$y = \frac{x^3}{3} \arccos x - \frac{2+x^2}{9} \sqrt{1-x^2}$$

Задание 2.
$$y = \frac{4+3x^3}{x\sqrt[3]{(1+x^3)^2}}$$

Задание 3.
$$y = x^{11}$$
, $x = 1,021$

Задание **4**.
$$y = (2x^3 + 1)/x^2$$

Задание 1.
$$y = \frac{3+x}{2}\sqrt{x(2-x)} + 3\arccos\sqrt{\frac{x}{2}}$$

Задание 2.
$$y = \sqrt[3]{\frac{(1+x^{3/4})^2}{x^{3/2}}}$$

Задание 3.
$$y = \sqrt[3]{x}$$
, $x = 1,21$.

Задание **4.**
$$y = (x-1)^2/x^2$$

Задание 1.
$$y = \frac{4+x^2}{x^3} \operatorname{arctg} \frac{x^2}{2} + \frac{4}{x}$$

Задание 2.
$$y = \frac{x^6 + x^3 - 2}{\sqrt{1 - x^3}}$$

Задание
$$3.y = x^{21}$$
, $x = 0.998$

Задание **4.**
$$y = x^2/(x-1)^2$$

Вариант 12

Задание 1.
$$y = \frac{x-3}{2}\sqrt{6x-x^2-8}$$

Задание 2.
$$y = \frac{(x^2 - 2)\sqrt{4 + x^2}}{24x^3}$$

Задание 3.
$$y = \sqrt[3]{x^2}$$
, $x = 1.03$

Задание **4**.
$$y = (1+1/x)^2$$

Вариант 13

Задание 1.
$$y = \frac{2x-5}{4}\sqrt{5x-4-x^2}$$

Задание 2.
$$y = \frac{1+x^2}{2\sqrt{1+2x^2}}$$

Задание 3.
$$y = x^6, x = 2.01$$

Задание 4.
$$y = (12-3x^2)/(x^2+12)$$

Вариант 14

Задание 1.
$$y = \sqrt{1-x^2} - x \arcsin \sqrt{1-x^2}$$

Задание 2.
$$y = \frac{\sqrt{x-1}(3x+2)}{4x^2}$$

Задание 3.
$$y = \sqrt[3]{x}$$
, $x = 8,24$.

Задание 4.
$$y = (9+6x-3x^2)/(x^2-2x+13)$$

Задание 1.
$$y = (2x^2 + 6x + 5) \operatorname{arctg} \frac{x+1}{x+2} - x$$

Задание 2.
$$y = \frac{\sqrt{(1+x^2)^3}}{3x^3}$$

Задание 3.
$$y = x^7$$
, $x = 1,996$

Задание **4.**
$$y = -8x/(x^2 + 4)$$

Задание 1.
$$y = \left(2x^2 - x + \frac{1}{2}\right) \arctan \frac{x^2 - 1}{x\sqrt{3}}$$
.

Задание 2.
$$y = \frac{x^6 + 8x^3 - 128}{\sqrt{8 - x^3}}$$

Задание 3.
$$y = \sqrt[3]{x}$$
, $x = 7,64$.

Задание **4**.
$$y = ((x-1)/(x+1))^2$$

Вариант 17

Задание 1.
$$y = \sqrt{1 + 2x - x^2} \arcsin \frac{x\sqrt{2}}{1 + x}$$

Задание 2.
$$y = \frac{\sqrt{2x+3}(x-2)}{x^2}$$

Задание 3.
$$y = \sqrt{4x-1}$$
, $x = 2.56$

Задание **4**.
$$y = (3x^4 + 1)/x^3$$

Вариант 18

Задание 1.
$$y = (x^2 + 8)\sqrt{x^2 - 4} + \frac{x^4}{16}\arcsin\frac{2}{x}$$

Задание 2.
$$y = \frac{(1-x^2)}{\sqrt[5]{x^3 + \frac{1}{x}}}$$

Задание 3.
$$y = 1/\sqrt{2x^2 + x + 1}$$
, $x = 1,016$.

Задание **4**.
$$y = 4x/(x+1)^2$$

Вариант 19

Задание 1.
$$y = e^{-2x} \arcsin(e^{2x})$$

Задание 2.
$$y = \frac{(2x^2+3)\sqrt{x^2-3}}{9x^3}$$

Задание 3.
$$y = \sqrt[3]{x}$$
, $x = 8,36$

Задание 4.
$$v = 8(x-1)/(x+1)^2$$

Вариант 20

Задание 1.
$$y = \sqrt{9x^2 - 12x + 5}$$
 arctg(3 $x - 2$)

Задание 2.
$$y = \frac{x-1}{(x^2+5)\sqrt{x^2+5}}$$

Задание 3.
$$y = 1/\sqrt{x}$$
, $x = 4.16$.

Задание **4.**
$$y = (1-2x^3)/x^2$$

Задание 1.
$$y = \frac{1}{81}(x^2 + 18)\sqrt{x^2 - 9}$$

Задание 2.
$$y = \frac{(2x+1)\sqrt{x^2-x}}{x^2}$$

Задание
$$3.y = x^7$$
, $x = 2,002$

Задание **4.**
$$y = 4/(x^2 + 2x - 3)$$

Задание 1.
$$y = e^{-3x} \arcsin(e^{3x})$$

Задание 2.
$$y = 2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$$

Задание 3.
$$y = \sqrt{4x-3}$$
, $x = 1,78$.

Задание **4**.
$$y = 4/(3+2x-x^2)$$

Вариант 23

Задание 1.
$$y = \sqrt{16x^2 - 8x + 2} \cdot \arctan(4x - 1)$$

Задание 2.
$$y = \frac{x+2}{\sqrt{x^2+4x+5}}$$

Задание 3.
$$y = \sqrt{x^3}$$
, $x = 0.98$.

Задание 4.
$$y = (x^2 + 2x - 7)/(x^2 + 2x - 3)$$

Вариант 24

Задание 1.
$$y = (4x^2 + 12x + 11)\sqrt{x^2 + 3x + 2}$$

Задание 2.
$$y = 3 \frac{\sqrt[3]{x^2 + x + 1}}{x + 1}$$

Задание 3.у =
$$x^5$$
, $x = 2,997$.

Задание **4**.
$$y = 1/(x^4 - 1)$$

Вариант 25

Задание 1.
$$y = e^{-5x} \arcsin(e^{5x})$$

Задание 2.
$$y = 3 \cdot \sqrt[3]{(x+1)/(x-1)^2}$$

Задание
$$3y = \sqrt[5]{x^2}$$
, $x = 1,03...$

Задание **4**.
$$y = -(x/(x+2))^2$$

Вариант 26

Задание 1.
$$y = \sqrt{x^2 - 8x + 17} \arctan(x - 4)$$

Задание 2.
$$y = (x+7)/6\sqrt{x^2+2x+7}$$

Задание 3.
$$y = x^4$$
, $x = 3,998$.

Задание **4**.
$$y = (x^3 - 32)/x^2$$

Задание 1.
$$y = (3x^2 - 4x + 2)\sqrt{9x^2 - 12x + 3}$$

Задание 2.
$$y = (x\sqrt{x+1})/(x^2+x+1)$$

Задание 3.
$$y = \sqrt{1+x}$$
, $x = 0.01$.

Задание 4.
$$y = 4(x+1)^2/(x^2+2x+4)$$

Задание 1.
$$y = \sqrt{4x^2 - 12x + 10} \arctan(2x - 3)$$

Задание 2.
$$y = (x^2 + 2)/2\sqrt{1-x^4}$$

Задание 3.
$$y = \sqrt[3]{3x+1}$$
, $x = 0.01$.

Задание **4.**
$$y = (3x-2)/x^3$$

Вариант 29

Задание 1.
$$y = \frac{2}{3}(4x^2 - 4x + 3)\sqrt{x^2 - x}$$

Задание 2.
$$y = ((x+3)\sqrt{2x-1})/(2x+7)$$

Задание 3.
$$y = \sqrt[4]{2x-1}$$
, $x = 1.02$.

Задание 4.
$$y = (x^2 - 6x + 9)/(x-1)^2$$

Вариант 30

Задание 1.
$$y = \sqrt{25x^2 + 1} \arctan 5x$$

Задание 2.
$$y = (3x + \sqrt{x})/(\sqrt{x^2 + 2})$$

Задание 3.
$$y = \sqrt{x^2 + 5}$$
, $x = 1.97$.

Задание 4.
$$y = (x^3 - 27x + 54)/x^3$$

Тема Обыкновенные дифференциальные уравнения

Вариант 1

1.
$$y' - \frac{y}{x} = \cos^2 \frac{2y}{x}$$

2.
$$y' - \frac{y}{x} = \frac{1}{x}$$
, $y(1) = 0$

3.
$$y'' - \frac{y'}{x} = \frac{1}{x}$$

4.
$$y'' - 6y' + 13y = 26x^2 + 2x$$
,
 $y(0) = -5/13, y'(0) = 1$

5.
$$y'' - 8y' + 16y = 4\sin 4x$$

1.
$$y' = \frac{y}{x} - 2$$

2.
$$xy' + 3y = \frac{1}{x}$$
, $y(1) = \frac{3}{2}$

3.
$$x^3y'' = 4 \ln x$$
, $y(1) = 4$, $y'(1) = 0$

4.
$$y'' + 4y' + 5y = 5x - 4$$
, $y(0) = 0$, $y'(0) = 3$

5.
$$y'' + y' = 3\cos x - \sin x$$

1.
$$y' - \frac{y}{x} = \sin^2 \frac{3y}{x}$$

2.
$$x^2y' + xy = 1$$
, $y(1) = 2$

3.
$$y'' - \frac{y'}{x} = 3x$$

4.
$$y'' - 5y' + 6y = 3e^{2x}$$
, $y(0) = 0$, $y'(0) = 1$

5.
$$y'' - 5y' + 6y = 2\sin x$$

Вариант 4

1.
$$y' = \frac{y}{x} + 2\frac{y}{x}$$

2.
$$y' - \frac{y}{x} = 3x$$
, $y(1) = 4$

3.
$$y'' + \frac{y'}{x} = x^2$$

4.
$$y'' - 6y' + 9y = xe^{2x}$$
, $y(0) = 2$, $y'(0) = 3$

5.
$$y'' + 2y' + 10y = -\sin 2x$$

Вариант 5

1.
$$y' = \frac{y}{x} - \frac{x^2 - y^2}{x^2}$$

2.
$$y' + y = e^{-x}$$
, $y(0) = 1$

3.
$$y'' - \frac{2y'}{x} = -\frac{3}{x^2}$$

4.
$$y'' - 8y' + 20y = 5x^2 + 6x + \frac{3}{2}$$
, $y(0) = \frac{1}{4}$, $y'(0) = \frac{3}{2}$

$$5. y'' - 6y' + 9y = \cos 2x$$

Критерии оценки:

Преподаватель имеет право установить иную шкалу оценки для данного вида КИМ.

Критерии оценки контрольной работы:

- оценка «отлично» выставляется студенту, если правильно выполнены 90-100% заданий:
 - оценка «хорошо» правильно выполнены 70-90% заданий;
 - оценка «удовлетворительно» правильно выполнены 50-70% заданий;
- оценка «неудовлетворительно» правильно выполненных заданий менее 50%.

Вопросы к зачету, экзамену

Список вопросов для подготовки к зачету (1 курс 1 семестр)

- 1. Предел числовой последовательности.
- 2. Предел функции в бесконечности.
- 3. Предел функции в точке.
- 4. Бесконечно малые величины. Связь бесконечно малых величин о пределами функций.
- 5. Свойства бесконечно малых величин.
- 6. Бесконечно большие величины, их свойства.
- 7. Связь между бесконечно малыми и бесконечно большими величинами.
- 8. Основные теоремы о пределах.
- 9. Первый замечательный предел.
- 10. Второй замечательный предел.
- 11. Непрерывность функции в точке.
- 12. Свойства функций непрерывных в точке.
- 13. Свойства функций непрерывных на отрезке.
- 14. Определение производной, ее геометрический и физический смысл.
- 15. Зависимость между непрерывностью функции и дифференцируемостью.
- 16. Правила дифференцирования.
- 17. Производная сложной функции. Производная функции, заданной неявно.
- 18.Производная обратной функции. Производная параметрически заданной функции.
- 19.Таблица производных элементарных функций (доказательство всех формул).
- 20. Производная показательно-степенной функции.
- 21. Теорема Ролля.
- 22. Теорема Лагранжа.
- 23.Правило Лопиталя.
- 24. Достаточное условие возрастания (убывания) функции.
- 25. Экстремум функции. Необходимое условие экстремума.
- 26. Достаточное условие экстремума.
- 27. Наименьшее и наибольшее значение функции на отрезке.
- 28.Выпуклость функции. Достаточное условие выпуклости функции вверх (вниз).
- 29. Точка перегиба. Необходимое условие перегиба. Достаточное условие.
- 30. Асимптоты графика функции.
- 31. Дифференциал функции, его свойства.
- 32.Инвариантность формы дифференциала.
- 33. Применение дифференциала в приближенных вычислениях.
- 34. Понятие о дифференциалах высших порядков.
- 35. Первообразная функция и неопределенный интеграл.
- 36. Свойства неопределенного интеграла.
- 37.Интегралы от основных элементарных функций.
- 38. Метод интегрирования по частям.
- 39. Универсальная тригонометрическая подстановка.
- 40. Метод внесения под знак дифференциала.

Список вопросов для подготовки к экзамену (1 курс 2 семестр)

- 1. Понятие определенного интеграла, его геометрический смысл.
- 2. Свойства определенного интеграла.
- 3. Теорема о среднем.
- 4. Формула Ньютона-Лейбница.
- 5. Геометрические приложения определенного интеграла. Площадь плоской фигуры.
- 6. Геометрические приложения определенного интеграла. Объем тела.
- 7. Несобственные интегралы с бесконечными пределами интегрирования.
- 8. Несобственные интегралы от неограниченных функций.
- 9. Дифференциальные уравнения. Основные понятия.
- 10. Уравнения с разделяющимися переменными.
- 11. Однородные дифференциальные уравнения первого порядка.
- 12. Линейные дифференциальные уравнения первого порядка.
- 13. Уравнение Бернулли.
- 14. Дифференциальные уравнения допускающие понижения порядка.
- 15.Определитель Вронского, его связь с линейной зависимостью частных решений л.о.д.у. второго порядка.
- 16. Определитель Вронского, его связь с линейной независимостью частных решений л.о.д.у. второго порядка.
- 17. Структура общего решения л.о.д.у. второго порядка.
- 18. Структура общего решения л.н.д.у. второго порядка.
- 19.Характеристическое уравнение, его корни и общее решение л.о.д.у. (Д>0).
- 20.Характеристическое уравнение, его корни и общее решение л.о.д.у. (Д=0).
- 21.Характеристическое уравнение, его корни и общее решение л.о.д.у. (Д<0).
- 22. Сумма ряда. Необходимый признак сходимости.
- 23. Ряды. Свойства рядов.
- 24. Признак сравнения рядов.
- 25. Признак сходимости Даламбера.
- 26. Радикальный признак Коши сходимости ряда.
- 27. Интегральный признак Коши сходимости ряда.
- 28. Предельный признак сравнения.
- 29.Сходимость ряда $\sum_{n=1}^{\infty} \frac{1}{n^p}.$
- 30. Признак Лейбница сходимости знакочередующихся рядов.
- 31. Абсолютная и условная сходимость ряда.
- 32. Интервал сходимости степенного ряда.
- 33. Свойства степенных рядов.
- 34. Разложение в ряд Маклорена функции е^х.
- 35. Разложение в ряд Маклорена функции sinx.
- 36. Разложение в ряд Маклорена функции cosx.
- 37. Биномиальный ряд.

Критерии оценки:

Форма аттестации – зачет (1 семестр).

Отметка «Зачтено» выставляется обучающемуся, который твердо усвоил программный материал, грамотно и по существу, без существенных неточностей отвечает на вопросы, владеет необходимыми навыками и приемами выполнения практических заданий.

Отметка «**He зачтено**» выставляется обучающемуся, который не знает значительной части программного материала, допускает принципиальные ошибки, неуверенно, с большими затруднениями выполняет практические задания.

Форма аттестации – экзамен (2 семестр).

- отметка «**отлично**» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, обосновывает правильно решение, разносторонними владеет навыками приемами выполнения практических задач.
- отметка **«хорошо»** выставляется студенту, если он твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения.
- отметка **«удовлетворительно»** выставляется обучающемуся, если он имеет знания только основного материала, но не усвоил его деталей, демонстрирует недостаточно систематизированы теоретические знания программного материала, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ.
- отметка **«неудовлетворительно»** выставляется обучающемуся, который не знает значительной части программного материала, допускает существенные ошибки при его изложении, неуверенно, с большими затруднениями выполняет практические работы.

Пример билета для экзамена

Новосибирский государственный аграрный университет

Факультет экономики и управления		УТВЕРЖДАЮ	
09.03.03 Прикладная информатика	Зав. кафедрой	математики и	
физики			
экзамен по дисциплине		В.Н.	
Бабин			
Математический анализ			
С.А. Журавская			
по дисциплине для студент	БИЛЕТ № 1 Математический анализ гов 1 курса (1 семестр) кономики и управления		
1. Вычислить предел $\lim_{x\to\infty} \frac{x^2 + 2x - 3}{5x - 2}$ 2. Найти производную функции y 3. $\int (5x - 2)\cos 7x dx$.			
Экзаменатор	подпись Фамилия	<u>С.А. Журавская</u> И.О.	

Новосибирский государственный аграрный университет

Факультет экономики и управления	y'	ГВЕРЖДАЮ
09.03.03 Прикладная информатика	кафедрой	
математики и физики		
экзамен по дисциплине	_	В.Н.
Бабин		
Математический анализ		
С.А. Журавская		
по дисциплине для студент	ЦИОННЫЙ БИЛЕТ № 1 Математический анализ гов 1 курса (2 семестр) кономики и управления	
1. $z = \frac{\cos x^2}{y} \cdot \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} - ?$		
2. Исследовать сходимость $\sum_{i=2^n}^{\infty} \frac{n}{2^n}$.		
3. $(xy^2 + x)dx + (y - x^2y)dy = 0$.		
4. $y'' - 2y' - 3y = e^{4x}$.		
Экзаменатор	 подпись Фамилия	<u>С.А. Журавская</u> И.О.

ЗАДАНИЯ ДЛЯ ОЦЕНКИ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

Задания для оценки уровня сформированности компетенции УК-1

Задание 1. Дана функция $y = \sqrt{6x - x^2} + \ln(x - 3)$. Тогда ее областью определения является множество:

- a) (3;6]
- 6)[3;6]
- B) $[6; +\infty)$
- r) (3;6)

Ответ: а

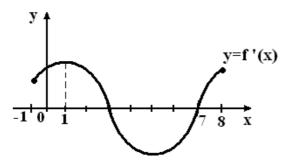
Задание 2. Обратная к бесконечно большой функции есть:

- а) бесконечно большая;
- б) бесконечно малая;
- в) ограниченная снизу положительным числом;
- г) ограниченная сверху отрицательным числом.

Ответ: б

Задание 3. Какое из ниже перечисленных предложений определяет производную функции (когда приращение аргумента стремится к нулю)?

- а) Отношение предела функции к аргументу.
- б) Предел отношения приращения функции к приращению аргумента.
- в) Отношение приращения функции к приращению аргумента.
- г) Предел отношения функции к приращению аргумента.

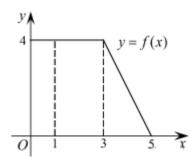

Ответ: б

Задание 4. Физический смысл производной – это:

- а) тангенс угла наклона касательной;
- б) работа силы;
- в) скорость изменения величины или процесса;
- г) ускорение изменения величины или процесса.

Ответ: г

Задание 5. На рисунке изображен график производной функции y=f(x),



заданной на отрезке [-1; 8]:

Тогда точкой максимума этой функции является: a) 3 б) 7 в) 1 г) 8 Ответ: а Задание 6. Укажите верную формулу: a) $(uv)' = u' \cdot v'$ б) $(uv)' = u' \cdot v + v' \cdot u$ $B) (uv)' = u' \cdot v - v' \cdot u$ $\Gamma(uv)' = u' \cdot v' + v \cdot u$ Ответ: б Задание 7. Значение предела $\lim_{x\to 2} \frac{x^2+1}{x-1}$ равно: a) -5 б) 7 в) 5 г) -7 Ответ: в Задание 8. Функция y = F(x) называется первообразной для функции f(x) на промежутке, если для любого x из этого промежутка выполняется равенство: a) F'(x) = f(x)б) F'(x) = f'(x)B) f'(x) = F(x) $\Gamma F''(x) = f(x)$ Ответ: а Задание 9. Обратная к бесконечно малой функции есть: а) бесконечно большая; б) бесконечно малая; в) ограниченная снизу положительным числом; г) ограниченная сверху отрицательным числом. Ответ: а

Задание 10. Пусть f(x) = sinx + 2, а $F_1(x) = -cosx + 2x$; $F_2(x) = cosx$; $F_3(x) = -cosx + 2x + 6$. Тогда первообразной для функции f(x) является: а) Только $F_1(x)$ б) Только $F_2(x)$ в) $F_1(x)$ и $F_2(x)$ г) $F_1(x)$ и $F_3(x)$ Ответ: г

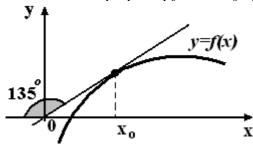
Задание 11. На рисунке изображен график некоторой функции y = f(x):

Пользуясь рисунком, вычислите определенный интеграл $\int_1^5 f(x) dx$ Ответ:

Задание 12. Какой вид имеет общий член последовательности 1, $\frac{3}{4}$, $\frac{5}{9}$, $\frac{7}{16}$, ...? Ответ:

Задание 13. Записать общее решение дифференциального уравнения второго порядка $y^{\prime\prime}=cosx+1$.

Ответ:


Задание 14. Дана функция $f(x) = \sqrt{4 - x^2}$. Найти ее область значений. Ответ:

Задание 15. Материальная точка движется прямолинейно по закону:

 $x(t) = \frac{1}{2}t^3 - t^2 + 2t$. (где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость в (м/с) в момент времени t = 6 с.

Ответ:

Задание 16. График функции y=f(x) изображен на рисунке:

Найдите значение производной этой функции в точке x_0 . Ответ:

Задание 17. Вычислите предел $\lim_{x\to\infty} \frac{6x^{20}+10x^8-3x^2}{2x^2+3x^{20}+2x}$.

Ответ:

Задание 18. Найдите производную функции $f(x) = x^3 \cdot \operatorname{tg} x$. Ответ:

Задание 19. Найти неопределенный интеграл $\int (x^3 + 3\sin 2x - 1) dx$. Ответ:

Задание 20. Найти площадь фигуры, ограниченной линиями:

$$\begin{cases} y = 4 - x^2 \\ y = x^2 - 2x \end{cases}$$

Ответ:

Задания для оценки уровня сформированности компетенции ОПК-1

Задание 1. Может ли функция иметь несколько первообразных?

- а) Нет. Каждая функция имеет только одну первообразную.
- б) Может иметь бесконечно много первообразных.
- в) Может иметь не более двух первообразных.
- г) Может иметь не более одной первообразной.

Ответ: б

Задание 2. Необходимое условие сходимости ряда $\sum_{i=0}^{n} a_{n}$:

- a) $\lim_{n\to\infty} a_n = \infty$.
- $\text{ f) } \lim_{n\to\infty} a_n = 0..$
- $\mathrm{B})\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=r<1$
- $\Gamma) \lim_{n \to \infty} \sqrt[n]{a_n} = r < 1$

Ответ: б

Задание 3. Найти угловой коэффициент касательной, проведенной к графику функции $y = x^3 + 2x$ в точке с абсциссой $x_0 = 2$.

- a) 2;
- б) 1;
- в) 14;
- г) 10.

Ответ: в

Задание 4. Достаточным условием убывания функции f(x) на интервале (a;b) является:

- a) f'(x) > 0на (a;b)
- б) f'(x) < 0на (a;b)
- β) $f'(x) \ge 0$ на (a;b)
- $f'(x) \le 0$ на (a;b)

Ответ: б

Задание 5. Найдите производную функции $f(x) = \sin(4x^2 + 2)$. Ответ:

Задание 6. Записать общее решение дифференциального уравнения второго порядка $y^{\prime\prime}-y=0.$

Ответ:

Задание 7. Вычислите определенный интеграл $\int_3^6 (x^2 - x) dx$ Ответ:

Задание 8. Найти асимптоты функции $y = \frac{1}{x-3}$.

Ответ:

Критерии оценки результатов тестирования:

- -оценка «отлично» выставляется студенту, если он отвечает верно на 80-100% вопросов.
- оценка «хорошо», выставляется студенту, если он отвечает верно на 70-79% вопросов.
- -оценка «удовлетворительно», выставляется студенту, если он отвечает верно на 60-69% вопросов.
- -оценка «неудовлетворительно» выставляется студенту, если он не освоил материал темы, дает менее 60% правильных ответов.

МАТРИЦА СООТВЕТСТВИЯ КРИТЕРИЕВ ОЦЕНКИ УРОВНЮ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ

Критерии оценки	Уровень сформированности компетенций			
Оценка по пятибалльной системе				
«Отлично»	«Высокий уровень»			
«Хорошо»	«Повышенный уровень»			
«Удовлетворительно»	«Пороговый уровень»			
«Неудовлетворительно»	«Не достаточный»			
Оценка по системе «зачет – незачет»				
«Зачтено»	«Достаточный»			
«Не зачтено»	«Не достаточный»			

Методические материалы, определяющие процедуру оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

- 1. Положение «О балльно-рейтинговой системе аттестации студентов»: СМК ПНД 08-01-2022, введено приказом от 28.09.2011 №371-О (http://nsau.edu.ru/file/403: режим доступа свободный);
- 2. Положение «О проведении текущего контроля и промежуточной аттестации обучающихся в ФГБОУ ВО Новосибирский ГАУ»: СМК ПНД 77-01-2022, введено в действие приказом от 03.08.2015 №268а-О (http://nsau.edu.ru/file/104821: режим доступа свободный).